AP CALCULUS AB	Activity 1209 - Riemann Integrals	Name:
Dr. Paul L. Bailey	Monday, December 9, 2024	

The Riemann integral produces the area between the graph of a function and the x-axis. We now give the formal definition.

As the definition is given in class, fill in the blanks.

Let $a, b \in \mathbb{R}$ with a < b.

A partition of the closed interval [a, b] is a finite set of the form

with the property that

Let $P = \{x_0, x_1, x_2, \dots, x_n\}$ be a partition of [a, b]. We view P as indicating a way of breaking the interval [a, b] into n subintervals. The width of the i subinterval is $\Delta x_i = x_i - x_{i-1}$, for $i = 1, \dots, n$. The norm of the partition P is

A choice set for P is a finite set of the form

such that $c_i \in [x_{i-1}, x_i]$, for i = 1, ..., n. Note that this implies

Let $f:[a,b] \to \mathbb{R}$. The *Riemann sum* associated to a partition P and a choice set C for P is

We say that f is Riemann integrable with integral I if there exists a real number $I \in \mathbb{R}$ such that, for every positive real number $\epsilon > 0$, there exists a real number $\delta > 0$ such that for every partition P and choice set C of P,

If f is Riemann integrable with integral I, we write

This is read, "the integral from a to b of f(x) dx equals I".